
ELUCIDATION of NFL BEHAVIOR

within a LANDAU APPROACH

Two Basic Postulates:

I. The energy E, entropy S and other thermodynamic quantities

are functionals of the quasiparticle momentum distribution n(p),

the number of quasiparticles being equal to the particle number:

Tr

∫

n(p) dυ =
N

V
≡ ρ

II. The entropy S is given by a combinatorial expression

S = −Tr

∫

[n(p) lnn(p) + (1 − n(p)) ln(1 − n(p))]dυ



• A standard variational procedure with additional conditions δN = 0 and δE = 0

leads to the Fermi-like distribution function

n(p) =
(

1 + eǫ(p)/T
)

−1

→ ǫ(p) = δΩ/δn(p) → Ω = E − µN

• Landau (1956)

Quasipartticle energy ǫ being a functional of n depends on temperature T as well

In accordance with the formula for n, the specific heat C(T ) is proportional to T

• Additional Assumption:

Fermi surface is simply connected (”Adiabaticity” of switching of interactions)

Indeed, any Fermi liquid with the simply connected Fermi surface behaves as a

GAS of interacting quasiparticles:

n(p, T = 0) = θ(pF − p) , ǫFL(p) = vF (p − pF ) , vF =
pF

M∗
> 0

C(T → 0) ∝ M∗T, χ(T → 0) = const ∝ M∗



Verification of this Assumption in Quantitative FL theory

• The quasiparticle spectrum ǫ(p) is evaluated from the Landau relation

∂ǫ(p)

∂p
=

p

M
+

∫

f(p,p1)
∂n(p1)

∂p1

dυ1,

treating the interaction function f(p,p1) as phenomenological input.

M

M∗
=

vF (ρ)

v0
F

= 1 −
1

3
F 0

1 (ρ)

where v0
F = pF /M and F 0

1 = f1(ρ)pF M/π2.

• Critical condition for connectivity of the Fermi surface

vF (ρ∞) = 0 → M∗(ρ∞) = ∞
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f(k) = −g(π/M)
[

(k2/4p2
F − 1)2 + β2

]

−1
, with g = 0.16, β = 0.14, and rs ∝ r0/aB .

the spectrum ǫ(p) does depend on T



Nonconvergent Iteration Procedure
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• Nozieres model ǫ(p) = p2/2M + fn(p)
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• Nonzero Entropy !!



New Ground State beyond the Critical Point

• Landau ground state with nF (p) = θ(pF − p) holds as long as

the necessary stability condition

δE0 =

∫

ǫ(p; nF (p))δn(p)dυ > 0,

is not violated. Beyond the critical point, the single-particle spectrum ǫ(p)

and variations δn(p) have opposite signs, and therefore δE0 < 0.

• Khodel,Shaginyan (1990):

Equation for the quasiparticle momentum distribution:

δE(n)

δn(p)
− µ = 0 → ǫ(p) = 0, p ∈ C



• Volovik (1991):

Topological charge

N =

∫

γ

G(p, ε) ∂lG(p, ε)
dl

2πi
,

Relevant Green function has the form:

G(p, ǫ) =
1 − n∗(p)

ǫ+iδ
+

n∗(p)

ǫ−iδ
p ∈ C

N = 1 for conventional Fermi liquids, with simply-connected Fermi surface

while for the states with fermion condensate N = 1/2.

• Nozieres (1992)

Finite temperatures → (cf. Landau (1956))

ǫ(p, T ) = T ln
1 − n∗(p)

n∗(p)
p ∈ C



. Why ”Fermion Condensation” ?

• Topological transition, where the Fermi surface swells from a line to a surface in 2D

and from a surface to a volume in 3D is called fermion condensation.

• Merging of single-particle levels-analog of fermion condensation in finite systems.

• In everyday life, the term condensation means simply dramatic increase of density.

• In statistical physics, Bose condensation is the emergence of a macroscopic number of

Bose particles, possessing the same single-particle energy ǫ = 0.

In strongly correlated Fermi systems, such a condensation is possible as well.

A macroscopic number of fermions can have the same energy ǫ = 0.

• Bose condensation exhibits itself in a sharp peak in the density of states:

ρ(ǫ) = ρcδ(ǫ)

In systems with a FC, the T = 0 density of states has the same peak.



Solution of T = 0 Landau Equation beyond the Critical Point

• Solutions, consistent with the Pauli principle n(p) < 1, exist at λ > λcr.

  

f(q) = λ(q2 + κ2)−1 with κ = 0.07 pF .



Thermodynamics of Systems with a Fermion Condensate

• Standard FL picture is violated .

I. Entropy

S(T → 0) = S∗ = −

∫

[n∗(p) lnn∗(p) + (1 − n∗(p) ln(1 − n∗(p))]dυ > 0

has a finite value instead of SFL(0) = 0.

The presence of the excessive entropy S∗ shows itself in a huge enhancement

of the thermal expansion β(T ) ∝ ∂S(T )/∂ρ = const instead of βFL(T ) ∝ T .

II. Spin susceptibility

χ(T ) =
1

T

∫

n∗(p)(1 − n∗(p))dυ =
Ceff

T
∝

ρFC

T

exhibits Curie-like behavior instead of χFL(T → 0) = const.



III. Sommerfeld-Wilson ratio

RSW (T ) =
χ(T )

γ(T )
∝

ρFC

T

diverges at T → 0 instead of RSW (T ) = const.

IV. In the phase with the fermion condensate, particle-hole symmetry breaks down.

V. In systems with a fermion condensate, P-parity is violated.



Pairing in Systems with a Fermion Condensate

• Pairing lifts degeneracy, associated with the fermion condensate,

and eliminates contradiction with the Nernst theorem.

The BCS gap equation

∆(p, T ) =

∫

V(p, p1)
tanh E(p1)

2T

2E(p1)
∆(p1, T )dυ1 .

• Setting V(p, p1) = g one finds Tc = 0.57∆(0) where

∆(0) = ΩDe−
2

gN(0) ,

• In systems with fermion condensate ∆(0) ∝ g ( Khodel-Shaginyan 1990).

Does this linearity open the way to high-Tc superconductivity?? (Pseudogap!)



Lifshitz Phace Diagram:

Between the Landau State state and a State with a Fermion Condensate

• Zverev,Baldo (1999) F
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Occupation numbers n(p), single-particle spectrum ǫ(p), and ratio ǫ(p)/T .


