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Schematic phase diagram of a phase separating alloy
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Theoretical approaches to simulations
of precipitation kinetics

» Kinetic Monte Carlo approach (KMCA): The most reliable
but time consuming, lattice misfit effects cannot be easily
taken into account

* Phase field method: is widely used, but continuous approximation
and mean field or CALPHAD thermodynamic potentials may
lead to errors, while treatment of fluctuative terms appears to be arbitrary.

« Stochastic statistical approach (SSA): consistent and
computationally efficient
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Classical theory of nucleation

1. Classical theory of nucleation (CTN).
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"i. \ Probability of critical fluctuation:

W~ exp(—F./T) ~ exp(—o” /TAf7).

2. Generalizations of CTN. Cahn and Hilliard (1959) used the Ginzburg-Landau-type free energy
functional to allow for non-uniformity of a critical embryo. However, their approach is valid only at high
T ~ T, and for large embryos when the discrete lattice effects are small. Dobretsov and Vaks (1998)
generalized this approach to take into account the discrete lattice effects, which will be referred to as the

“classical theory of nucleation for discrete lattice” (CTN-DL), and below we show some results of this
approach.

However, all these purely thermodynamic treatments disregard the fluctuative nature of the nucleation
process. Therefore, even though these approaches are useful to understand the general trends in dependences
of nucleation kinetics on thermodynamic parameters, their results are shown below to have typically little
in common with properties of real new-formed precipitates.
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Some experimental data on precipitation of copper
in Fe-Cu—based steels
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Atomic probe tomography (APT) data by Cerezo et al. (2005). Concentration of Cu, Mn and S is

0.5, 1.5 and 0.75 at.%. respectively.
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Some experimental data on precipitation of copper
in Fe-Cu—based steels
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Copper-rich precipitates in the NUCu-150 steel with an isoconcentration surface at a
5 at.% copper threshold level after aging at 773 K for (a) 2 h, (b) 24 h, or (c) 100 h.
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APT data f{}]i' neutron-irradiated E'LH{)}-""S Concentration profiles for copper-rich precipitates in the NUCu-150 steel after the

by Miller et al. (2003).

same treatments as in the upper figure (Isheim et al., 2006)
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Generalized Gibbs distribution approach (GGDA)

We consider a substitution alloy A-B with vacancies v (ABv alloy). Its configurations are deseribed
by the occupation number sets {n,} where p is A, B or v; n,; is 1 when site i is occupied by an atom
p and zero otherwise; na; + np; + ny; = 1. Our approach is based on the general master equation for the
probability P to find the number set {pi} = &:

P(&)/dt =Y [W(&n)Pn) — W(n,&) PE)). (1)

where W(& 1) is the n — £ transition probability per unit time. Adopting the “thermally activated
atomic exchange model”, we can write W as asum of probabilities Tfl-"'f;q of elementary inter-site exchanges

“lumps’ ) q 7 < pi
(“jumps”) qj > |

1’1":'[-"1 = ﬂ[uﬂcuw i exp[—/ (E[?:J - E?:?u)] = Npillg 7 Fu ! exp(/ jE{: q;j' ’r'a[';q = wj, (“qj[ dE[ij:J) (2)

“1ig the attempt frequency, 3 = 1/T is the reciprocal temperature, E?. . 1is the saddle point

Here w bidl

.1 .} b ) L) ) .1 ] ™ 3 o’ 1 o’ b .} r
energy, rmrl E[” o 18 the initial (before the jump) configurational energy.

For the usual conditions of phase transformations, the probability P in (1) can be shown to have the
form of the generalized Gibbs distribution (GGD):

P{ny} =exp [B(Q2+ Z Apifipi — Z Vn,my;)] (3)

P g

Here A; (being, generally, both time- and sp El(:(!—('lﬂpﬂﬂdﬂﬂt] can be called “site chemical potentials™ the last
term describes configurational interactions supposed to be pairwise; and (2 is determined by normalization.
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Quasi-equilibrium kinetic equation

For simplicity, first we consider the direct atomic exchange (DAE) models; their equivalence to more
realistic, vacancy-mediated exchange (VME) models is discussed below. Multiplving master equation

(1) by the operator na; = n; and summing over all confipurational states (which implies neglecting
fluctnations of atomic fluxes discussed below), we obtain the “quasi-equilibrium” kinetic equation { QKE):

deg/dt =) My 2sinh[B(A; — A)/2]. (4)
i
Here mean occupations of sites (“local concentrations”) e; correspond to averaging n; over the GGD

(3):

[apd
o

e = (mg) =Y n Piny}, (
{r.',j}

while dependences of A; on occupations ¢; and on effective interactions vy; = [11;"“"* — 21*';:?‘3 + I'Q?E]

are determined by Eq. (5). Generalized mobility M;;(c;) for DAE models has the following general
form:

B . — , ) . . \ P

My = ﬁrﬁ Byjexp [G(0 + A0 /2] By = gngn} exp |3 Z[uﬂ + uy )y} (6)

14,
where n; = (1—mn;). and “kinetic potentials” wu;; are fl’}:?‘B—I*';?B]. For VME models, the appropriate

PR

“effective mobilities” in (4) will be shown to have the form similar to Eq. (6).
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To find functions A {c;} and M;;(e;) from Eqgs. (5) and (6), we should use some method of statistical
‘alculations, such as kinetic mean-field approximation (KMEFA), or kinetic pair cluster approximation
(KPCA). At low concentrations and temperatures ¢, 7 under consideration, KMFA can not be used as
it yields order-of magnitude errors for all main parameters of processes, such as the supersaturation s.
On the contrary, KPCA at low ¢ and T is, generally, highly accurate, and below we use only KPCA.

For further generalizations, we also rewrite QKE (4) in the “finite difference” form, integrating it over
a small time interval dt:

=1
L

Z M;j2smh|5(A; — Ai) /2ot (

Now we note that the QKE (4) or (7) d{tt{trmm{t evolution of concentrations ¢; due to the averaged
atomic fluxes, and they can be shown to describe only those processes in which the total free energy F,,
decreases. However, nucleation processes should be accompanied by a local increase of F, to overcome
micleation barriers, and to describe it we should also consider the fluctuations of atomic fluxes. To this
end we first note that the GGD approach, being a statistical description based on “ensemble averages”
¢; = (ny), is physically informative and complete only for those non-equilibrium systems which can be
divided into some locally equilibrated subsystems (called in textbooks “quasi-closed subsystems”) for which
the site chemical potential A; 1s approximately const ant, with the size [, much exceeding the interatomic
distance. Thus summation over alloy states in Eq. (5) should include the distributions {n;} with only
not too large inhomogeneity lengths | < [, while long-wave fluctuations with [ 2 [, are fixed in the
non-equilibrium state under consideration. Therefore, the “diffusive” term entering QKE (7) corresponds
to the averaging only over the short-ranged fluctuations at the fixed long-wave fluctuations, and the terms
describing the dynamics of these long-wave fluctuations should also be considered.
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Stochastic kinetic equation

To describe these fluctuative terms, we use the stochastic approach of the type suggested by Langevin
for mechanical systems, proceeding from averages (n;) = ¢; to the “individual phase trajectories”, that
is, to fluctuating occupation numbers n;(t) averaged only over the quasi-closed subsystem to which it
belongs. It differs from the full average (n;) due to the long-wave fluctuations of atomic transfers f?*n,jr j
across each bond ij (that connects the site ¢ with some its neighbor j) for the time interval §¢. Thus

instead of the QKE (7) we obtain the stochastic kinetic equation (SKE):

Sn; = mi(t + 0t) — ny(t) = dnai{e;} + Y onl. (8)
ki

where the diffusive term dng means the right-hand side of the QKE (7). Then we treat each fluctuative
transfer rﬁnjr jas a random quantity with the Gaussian probability distribution:

W(on!) = A, jexp[—(6n])*/2D,)) (9)

where A;; is the normalization constant, and the dispersion Dj; is the same as that for the actual
fluctuative transfer f?n;!rj. For small time intervals 0f < 1/M;;, the dispersion D;; is simply related to
the mobility M, ;:
I-} c ; .
D;; = ((0n],)) = 2M, 6t. (10)
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Filtration of noises

Unlike standard applications of the Langevin-noise method to mechanical systems, for statistical
systems under consideration it should be supplemented by the ‘filtration of noise” procedure which
eliminates short-wave contributions to the fluctuations r?’n,jr j (these contributions are actually included
into the diffusive term dn? of Eq. (4) obtained by statistical averaging over these short-wave fluctuations).
Thus, in the last term of SKE (8), the full fluctuative transfer r?njr ; should be replaced by its long-wave
(or “coarse-grained”) part ﬁnjr ; The latter is obtained by introducing a proper cut-off factor F.(k) in
the Fourier-component dny,(k) of the full function énjrj = on/(R,.) where R,, denotes the position
of the center of bond 77 in the appropriate sublattice o formed by these bond centers in the crystal:

. . 1 .
0n,(Ras) = Z(r}q}[—szm) on g, (k) Fi(k); 0n (k) = N Zc.‘}q}[zkﬂm) 0ngo(Ras).  (11)

k R.n

The cut-off factor F.(k) can be taken in the following simplest form:

F.(k) = exp [—¢ Z(l — cos kR, (12)
i
where R, are the nearest-neighbor lattice vectors in the crystal lattice considered. For the large g% > 1
used, the cut-off factor F,(k) is reduced to the gaussian exp (—k*1?/2) with I, = ga where a is the lattice
constant. Thus, quantity [ = ga has the meaning of a characteristic size [;. of the locally equilibrated
regions (quasi-closed subsystems ) mentioned above.
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Equivalence of precipitation kinetics for the vacancy exchange models

to that for certain direct exchange models
Vacancy concentration c,; is quite small. Therefore, the relaxation times for distributions of
atoms A in an ABv alloy are by factor 1/ ¢, larger than the time of the relaxation of vacancies at

the given distribution of c,; to their equilibrium distribtion c {c,;} - The resulting “adiabaticity
equation” dc,, /dt = 0 can usually be solved either exactly or approximately. It yields:

y,:fl; = 7/VA7/VBV(t)’ t, =I7/§fé(t')dt'
0

where v(t) is some “spatially self-averaged” function of concentrations c,, and c,;.

Vacancy trapping and “equivalence theorem” for the Belashchenko and Vaks (1998) model
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Rescaling of time
SFmodelat T=773 K and ¢c = 1.34 at.
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Left: Dependence of reduced time ¢, (of the mean number of inter-site exchaneges A<—B per site) on
r \ o
physical time £ for the SF-1 model found from comparison of the SSA and KMCA simulation results.
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Right: Same for the effective A—B exchange rate
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Alloy models used for simulations

Soisson and Fu, 2007 (SF) Le Bouar and Soisson, 2002 (LBS)

Interactions (in K)

v, =-1400 + 0.18T, v, =-240 + 0.09T, ) )
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Solid lines — binodals, dashed lines — spinodals. Red lines — pair cluster approximation (PCA),
green lines — mean-field approximation (MFA), black circles — CALPHAD estimated binodals,
triangles — points used for simulations
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Soisson and Martin (2000)
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Concentration profiles and parameters of thermodynamic critical
embryos found using Dobretsov and Vaks (1998) method

Supersaturation, nucleation barrier F,
and the number of atoms in critical embryo N,

Ac
0.8

0.6

0.4

Alloy state S FJT | N
Soisson and 0.29 |7.48 | 33.8
Martin, 2000

(blue)

SFT=773K (SF-1) [0.29 |4.38 |14.3
c=1.34 % (red)

SF,T=713K (SF-2) [0.35 |247 |10.7
c=1.34 % (black)

SF, T=663K (SF-3) [0.43 |1.36 |8.2
c=1.34 % (purple)

r(nm)

0.4 0.6 0.8

LBS, T=1000 K, 046 |0.83 |6.2
c=1 % (green)
SF, T=561K, 039 |11 5.0

¢=0.078% (orange)
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Estimating the local equilibrium length | = ga
from the "maximum thermodynamic gain” principle

As mentioned, the reduced length | = ga in our equations characterizes sizes of locally equilibrium
quasi-closed subsystems used in the statistical description of a nonequilibrivumn alloy. The actual distribution
of these lengths in an alloy varies with both space and time; in particular, after creation of a supercritical
precipitate, the degree of local equilibrium in the adjacent region should significantly increase with respect
to other regions where such precipitates are not born yet.

For simplicity we characterize the distribution of all local lengths I(r) by a single spatially averaged
parameter [ = ga where the reduced length g = [/a, generally, varies with the evolution time ¢ or
reduced time 7,. After completion of nucleation at some #, = ty. the alloy rapidly approaches the full
two-phase equilibrium. Thus the length [(#,) = ga at t,. 2 ty should become large, fluctuative terms in
our stochastic equations become small. and the SKE transforms into the QKE with no fluctuation terms.

To describe the above-discussed physical picture with the minimal number of model parameters, we
approximate the time dependence ¢(t,) by the following simple expression:

g(tr) = go(1 +t/15). (1)

which includes two parameters to be determined: gy expected to be of the order of reduced size of critical
precipitates: gg ~ R./a, and tg of the order of reduced nucleation time ¢y,
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Estimating the local equilibrium length | = ga
from the "maximum thermodynamic gain” principle

To estimate gy and tp, we try to extend the second law of thermodynamics, that is, the principle
of minimum of free energy with respect to all its free parameters (valid for equilibriumn systems) to the
kinetics of non-equilibrium systems studied. To this end we note that main characteristics of microstructure
formed in the course of the nucleation process, including the characteristic local equilibrium length [ or
the length of local non-uniformity of chemical potentials [, ~ [, can be treated as “free” parameters
of structure of a nonuniform nonequilibrium state analogous to “static” free parameters in equilibriun
systems. Thus it seems natural to suggest that the kinetic path of evolution of this nonequilibrium state
should correspond to the maximum thermodynamic gain, that is, to the maximum rate of decrease of
free energy. This suggestion can extend the “excess entropy production” approach to thermodynamics
of irreversible processes discussed by Prigogine for open systems to the closed non-equilibrium systems
under consideration. Then parameters ¢gg and #y can be estimated from the condition of maximuim
thermodynamic gain in the course of the nucleation process, that is, from minimization of the free energy
F(go,t,) at t, ~ ty with respect to gg and tp. This free energy is easily calculated by the GGDA
methods.
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Temporal evolution of the free energy F(t.) per copper atom and of
the total number N (t,) of supercritical precipitates for the
Fe-1.5%Cu alloy at 873 K
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Left: Free energy [F(f,). Right: total number Ny(t,) of supercritical precipitates (those which contain

p = p. =21 copper atoms) within simulation box. Dashed curves: t, =

150; solid curves: t; = 100;

dotted curves: tg = 50. Black curves correspond to some more crude, one-parametric model for g(t)

with sharp switching off luctuations at ¢ > ty.
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Temporal evolution of the free energy F(t) per copper atom and the
total number N (t) of supercritical precipitates for the SF-1 model
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Left figure: Free energy F'(t,). Right figure: total number N,(#,) of supercritical precipitates (those which
contain p > p. = 15 copper atoms) within simulation box. Dashed curves: ty = 100; solid curves: to = 50;
dotted curves: t, = 20.
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Comparison of some results of SSA and KMCA simulations
For the SF-1 model
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Left: Total number N,(¢) of supercritical precipitates within simulation box. Right: Average number of
atoms within a precipitate (“average precipitate size”) (i(t)). Red curves or squares show the results of
two different KMCA runs. Green dashed curves show the SSA results.
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Kinetics of very first stages of nucleation for SF-1 model
6.9

6.4 6.8
7.0 7.4

Evolution of concentration within a plane containing several nucleating precipitates observed
in SSA simulation for the SF-1 model at the reduced time trvalues shown near each frame
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Kinetics of very first stages of nucleation

Evolution of concentration within a plane containing several nucleating precipitates observed
in SSA simulation for the SF-1 model at the reduced time trvalues shown near each frame
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Kinetics of very first stages of nucleation

Evolution of concentration within a plane containing several nucleating precipitates observed
in SSA simulation for the SF-1 model at the reduced time trvalues shown near each frame
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Microstructure at various stages of precipitation

SF-1, T=773 K, c =1.34at %; Simulation volumes V55 =(64a)3; V/KMCA= .5V SSA

Just before nucleation, t = 55 sec End of nucleation, t = 1000 sec
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Microstructure at various stages of precipitation

SFET=773K,c=134at%

Beginning of coarsening, t = 2000 sec Coarsening, t = 4000 sec
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Distribution of concentrations ¢; = ¢(R;) at the end of nucleation for the following alloy states:
(a) SF-1, ¢=0.0134, T'=773 K, s =0.287;
(b) SF-3, ¢=10.0134, T =663 K, s =0.425;
(c) SF-4, ¢=0.0197, T =773 K, s =0.426.
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Precipitation in Ternary Fe-Cu-Mn alloys

In consideration of Fe-Cu-Mn alloys, both configurational interactions v;; and kinetic interactions w;;
between Cu and Fe atoms were taken from the SF model described above. Configurational and kinetic
interactions of Mn with Fe and Cu have been estimated using the available empirical description of
thermodynamics of the Fe-Cu-Mn system (Mittienen, 2003). Our simulations were made for two sets of
values of temperature and composition :

[. Those used by Miller et al. (2003) in their experimental studies of decomposition under neutron
irradiation of alloys: (A) Fe-Cu, and (B) Fe-Cu-Mn: T = 561 K, ¢}, = 8, —0.78 at.%, and ¢ —1.05
at.%.

[I. Those corresponding to recent experiments by Shabadi et al. (2010) at 7" = 873 K, c:ﬁn—l at. %,
and several c‘éu = cgu close to 1.08 at.% used by Shabadi et al.

All microstructural characteristics of precipitation in Fe-Cu-Mn alloys were found to be rather sensitive
to both configurational and kinetic interactions of Mn with Cu and Fe. Below we present some results
for such values of these interactions which seem to be “most realistic” among those tried in our simulations.
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Simulations I. Distribution of local concentrations of Cu and Mn at the end of nucleation (upper row)
and at some advanced stage of coarsening (lower row) for the Fe-Cu alloy (left) and for the Fe-Cu-Mn
alloy (middle and right), with the following Mn interaction parameters: v} = —100 K, »}™" =60 K,
uM® = 0. Only sites ¢ with & > 0.05 and ™ > 0.03 are shown.
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.
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Left: Evolution of total number of supercritical precipitates within simulation box. Red curve corresponds
to the simulation for Fe-Cu alloy, the rest curves correspond to the simulations for Fe-Cu-Mn alloy using
different kinetic interactions uM" for Mn. Black curve corresponds to some first-principle estimate of

~ Mn Mn
Uy, n

(seeming to be unrealistic), while blue and green curves correspond to the estimates of w,; " from
thermodynamic data. Middle: Concentration profiles averaged over coordination spheres for Cu (red
curve) and Mn (green curve) at an advanced stage of coarsening (¢, = 6000) observed in the simulation
corresponding to the green curve in the left figure. Right: Same as in the middle figure observed in

experiments by Miller et al (2003).
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Simulations II. Evolution of mean size of precipitates <i(t)> and
total number of supercritical precipitates N (t) in Fe-Cu and
Fe-Cu-Mn alloysat T = 873 Kand ¢, = 0.02
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Fig. 3. Evolution of different cluster parameters with the 600°C aging time: a) chemical
composition (CC), average size (AS) (radius), b) number density (ND).
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Simulations II. Distributions of Cu and Mn atoms at some
intermediate stage of coarsening in
Fe-Cu-Mn alloysat T = 873 Kand ¢, = 2%

V=5x5x5 nm’
Fig. 2. Individual Cu clusters in the samples aged at 600 °C for 10min: a) Fe-1.3Cu alloy
and b) Fe-1.3Cu-1Mn alloy
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CONCLUSIONS

. The consistent and computationally efficient stochastic statistical
approach is suggested to study the kinetics of decomposition of
metastable alloys.

. In this approach, description of evolution in terms of certain reduced
time includes no adjustable parameters. Rescaling of this reduced time
to the physical time can be made with the use of few constants which
can be estimated either from comparison to kinetic Monte Carlo
simulations or from experiments.

. For several realistic models of Fe-Cu alloys studied, the results of this
approach agree well with the kinetic Monte Carlo results.

. Application of the methods developed to studies of decomposition of
Fe-Cu-Mn alloys revealed a great sensitivity of evolution to the values
of both configurational and kinetic interactions between Mn, Cu and Fe
atoms. Estimating these interactions from available thermodynamic
data, we can well reproduce the main microstructural features of
decomposition of Fe-Cu-Mn alloys observed in experiments by Miller et
al. (2003) and Shabadi et al (2010).
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