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Introduction: Completely Integrable PDE Dy-
namical Systems and Linear Operators:

The typical 1D Case: KdV is equivalent to

the Lax Pair

ut = 6uux − uxxx → dL/dt = [A, L],

L = −∂2
x + u(x, t)

A = ∂3
x + 3/2(u∂x + ∂xu)

There are also (3/2)D Cases like KP



The 2D analog of Lax Pair is:

dL/dt = [A, L] + fL

It was found by Manakov and used since 1976
by Novikov’s Group DKN:
L = −∆ + U∂x + V ∂y + V (x, y)

There are different possibilities for the op-
erator A: It was chosen of the 3d order to
get physically interesting Nonlinear Systems.
We choose it now of the order two for the
second kind applications (below).



Two different ways to use this presentation
are known:

I. From the Spectral Theory of the operator
L to the Solutions of Nonlinear System (The
Inverse Scattering Transform for the Solitons
and Algebro-Geometric Solutions for the Pe-
riodic Problem).

II. From Nonlinear Systems to the Nontriv-
ial Exactly Solvable Quantum Systems: (The
Algebro-Geometric or Finite-Gap Periodic 1D
Schrodinger Operators and 2D Scalar Opera-
tors with One Selected Energy Level ǫ = ǫ0).



Principle: Is it possible to solve efficiently a
inverse spectral problem (inverse scattering
problem) for a linear operator?

The answer is yes iff there exists an inte-
grable hierarchy associated with this prob-
lem. This hierarchy generates the symme-
tries of this problem.

Special case: the problem of reductions.
Examples: Pure electric 2D Schrodinger op-
erators, pure magnetic 2D Schrodinger oper-
ators. Reductions can be described in terms
of spectral data if they are compatible with
associated hierarchies.



Our Goal now is to extend these ideas to the
special case of the 2D Purely Magnetic Pauli
Operator LP (spin 1/2). There is something
here deserving todays discussion.

In 1979-1980 three groups of authors studied
the ground level using ”The Factozization
Property” of the 2D purely Magnetic Pauli
Operator written in the Lorenz gauge A1x +
A2y = 0 with A1 = iΦy, A2 = −iΦx: (Avron-
Seiler[AS], Aharonov-Casher[AC], Dubrovin and
Novikov [DN]:



LP = L+ ⊕
L−,

and

−L± = (∂x + iΦy)2 + (∂y − iΦx)2 ± ∆Φ

It acts in the space of vector-function

Ψ = (Ψ+,Ψ−).

Take Q = ∂z +Az, B = ∆Φ, Az = A1− iA2 =
−Φx + iΦy, magnetic field B = ∆Φ in our
units.

The Operators L± are Factorized

L+ = QQ+,L− = Q+Q



The most interesting classes of magnetic fields

are [AC] and [DN].

1.AC: Rapidly decreasing fields, |[B]| = | ∫

R2 Bdxdy|
∞. Ground states form a finite-dimensional
space of dimension m ∈ Z, m ≤ [B] < m + 1

2.DN: Periodic fields with integer flux 6= 0
through the elementary cell 0 6= ∫

cell Bdxdy =
m ∈ Z.

The ground states form an infinite dimen-
sional subspace in the Hilbert Space L2(R

2)
isomorphic to the Landau level.



Remark:

”Generic” operators and their topology in the
space of quasimomenta, in particular Chern
numbers of the transversal dispersion rela-
tions, were studied in 1980-81 by Novikov
and A.Lyskova as a continuation of this work.
It was partly rediscovered by physicists of the
Thouless group few years later after the ex-
perimental discovery of the famous ”Integral
Quantum Hall Fenomenon”.



In the cases AC and DN all ground states are
the Instantons belonging to one spin-sector
only:

a.They satisfy to the 1st order equations Q+ψ =

0 for the case [B] > 0 and Qψ = 0 for the

case [B] < 0. It is a simple prototype of the

self-duality equation.

b.They belong to the Hilbert Space L2(R
2)



The operator

S : (Ψ+,Ψ−) → (0, Q+Ψ+)

is a ”Super-Symmetry” for LP . Here S2 =
0, SLP = LPS, S∗LP = LPS∗. The ”adjoint”
supersymmetry operator is

S∗ : (Ψ+,Ψ−) → (QΨ−,0)
SS∗ + S∗S = LP .

It is special case of the ”Laplace Transforma-
tions” known since XVIII Century. It implies
that all higher levels are 2-degenerate (the
ground level is ∞-degenerate).



How to unify this technic with methods of
The Soliton Theory? There are Difficulties
here:

1. In the Algebro-Geometric Theory of the
2D Second Order Scalar Schrodinger Oper-
ators and Corresponding Soliton Hierarchies
(started in 1976 by Manakov[M] and Dubrovin-
Krichever-Novikov) Magnetic Field is Always
Topologically Trivial: Flux = 0

2.No Reduction was known leading to the
Factorized operators. The case of zero flux
was unsolved. We use Nonlinear Systems.



Why Nonlinear Systems are useful here? How
to use them? The existence of time-invariant
reduction is much easier to see on the level
of equation than in the Spectral Theory of
operator. Many years ago Novikov made
observation: Only time-invariant reductions
have good solution of the Inverse Scattering
Problem.
Consider a very first Manakov’s System Lt =
[H, L] + fL where L, H are the second order
operators: L = ∂x∂y + G∂y + S, H = ∆ +
F∂y+A. Konopelchenko pointed out in 1988
that the reduction S = 0 is time-invariant. It
looks like 2D analog of the famous Burgers
system. Make replacement x, y → z, z̄ to get
elliptic operators interesting for us.



Our Conclusion: Corresponding Inverse Prob-
lem can be effectively solved: The Solution
is:

Take Riemann Surface (the Complex Fermi Curve)
splitted into nonsingular pieces Γ = Γ′ ⋃

Γ′′ with genuses
g′, g′′. They cross each other Pj = Qj, Pj ∈ Γ′′, Qj ∈ Γ′,
j = 0, ..., l.
Take infinities, i.e. 2 points ∞1 in Γ′,∞2 in Γ′′, with
local parameters 1/k′,1/k′′. Our vector-function ψ̃ =
(ψ′, ψ′′) is meromorphic outside of infinities

ψ′ ∼ c(x, y)ek′z̄(1 + O(k′−1)),

ψ′′ ∼ ek′′z(1 + O(k′′−1)),

they have constant poles D′, D′′ consisting of g′+ l, g′′
points, not crossing infinities and intersection points,
z = x + iy.



From this Data we calculate a psi-function
ψ̃ = (ψ′, ψ′′) and operator L̃ = ∆ + G∂z̄ with
S = 0 such that L̃ψ′ = L̃ψ′′ = 0. We can
explicitly calculate them.

For the self-adjoint case g′ = g′′, and reduced
Data can be described.
The reduced Data after the non-unitary gauge
transformation

L = c−1/2L̃c1/2, ψ̃c−1/2 = ψ

generate an operator L = QQ+.
Taking L+ = L and L− = Q+Q, we construct
a Purely Magnetic Pauli Operator

LP = QQ+ ⊕
Q+Q.



The Magnetic Field is real B = 1/2∆ log c,
periodic or quasiperiodic and Topologically
Trivial. It is nonsingular if c 6= 0, so the
operator is self-adjoint in this case.

Easy to find ground states here:

Take ψ0 = c1/2 in the first spin-sector be-

cause Q+ψ0 = 0.

Take φ0 = c−1/2 in the second sector because
Qφ0 = 0.‘



For periodic c 6= 0 we have two periodic
ground state functions located in both sec-
tors. They obviously are at the bottom of
the CONTINUOUS SPECTRUM.

We obtained full description of all complex
nonsingular Bloch functions of the ground
level.

Is there any relationship of this functions with
ground states found in [DN] in 1980 for the
topologically nontrivial magnetic field? The
cases g = 0,1 below will lead to solution of
that problem.



The Case of Genus zero

Fig 1

vanishing cycles

Γ

P1

=CP1Γ

P2

=CP1

D



We take l + 1 intersection points presented
as k′ = ks and k′′ = ps in Γ′,Γ′′, and divisor
D′ = (a1, ..., al) of degree l in Γ′. We have

Ψ = ek′z̄ w0k′l+...+wl
(k′−a1)...(k′−al)

,Ψ|k′=ks
= epsz. As we

can see, c = w0.

So c =
∑l

s=0 κseWs(z,z̄), where Ws is a linear
form. All complex coefficients are possible.

Ws = αsx + βsy, (αs, βs) ∈ C2
W . Transforma-

tion c → c′ = ceγ+αx+βy leads to the gauge
equivalent operator (the same magnetic field)



There exist 3 types of Real Solutions:

1.Purely Exponential Positive Case (The Lump-
type fields”) κs > 0, (αs, βs) ∈ R.

2.Periodic Trigonometric Real Case. It will
be considered below jointly with the case g =
1

3.The mixed case. It can be realized only
if its ”dominating part” belongs to the case
1. We will not discuss it.



The case 1. Let ”the Tropical Sum” of the
forms in the set {W} is nonnegative I ′{W}(φ) =

= maxs(αs cosφ + βs sinφ) ≥ 0.

Then c−1/2 is bounded in R2

For the angles I ′{W}(φ) > 0 we have a rapid

decay

c−1/2 → 0, R → ∞,

Let

I(φ) = max{I ′(φ),0}
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In every class c′ ∈ ceW , W ′ ∈ R2
W , the set

of representatives c′ with nonnegative I =
I ′{W ′}(φ) ≥ 0 forms a convex polytop T̄c. Its

inner part Tc ⊂ T̄c consists of all c′ such that
I{W ′} > 0. Open part Tc is always nonempty

for l > 2. T̄c is nonempty for l > 1. (see Fig
2b for l = 3)
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Magnetic field is decaying for R → ∞ except some

selected angles, it is a Lump Type Field analogous to

the KP ”Lump Potentials”.A linear sum under the

1/2∆ log() reflects linearization of the Burg-

ers Hierarchy in the variable c.

[B] =
∫ ∫

D2
R

Bdxdy =

= −1/2R
∮
S1 I{W}(φ)dφ + O(R−1) All points in Tc de-

fine ground states in the Hilbert Space L2(R
2). The

boundary points define the bottom of continuous spec-

trum.



The Periodic Problem. Let lattice in R2 be rect-

angular and z = x+iy. For every real periodic function

c we can define a whole family of ”possible” meromor-

phic Bloch functions

ψ′′
ext,± = f(z)(

√
c)±euz−ζ(p)zσ(z+p+R)/σ(z+R) where

f(z) is an arbitrary elliptic function. We have L+ψ′′
ext,− =

Q+ψ′′
ext,− = 0. For anti-holomorphic case z → z̄ and

L−ψ′′
ext,+ = Qψ′′

ext,+ = 0

Let c 6= 0. We need only nonsingular functions, so our

manifold is u ∈ CP1 = Γ′′ and ψ′′
+ is equal to euz√c or



euz̄√c.

Let c have an isotropic zero.

First: The nonsingular family ψ′′ became larger, with

manifold M2 = CP1 × Γ where Γ is elliptic.

Second: The function c for L+ should be replaced by

c′ = 1/c for L−. To calculate ψ′ for both sectors we

should extend our formulas to all periodic functions.

Magnetic field became sum of smooth field and Aharonov-

Bohm δ-term with integer flux.



The case of genus 1.
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We take elliptic curve Γ′ = Γ′′ = C/Λ with

euclidean local parameters k, p (the point 0

is ”infinity”), periods 1,2iω ∈ iR , n intersec-

tion points Q0, Q1, ..., Qn ∈ Γ′ and R0, ..., Rn ∈
Γ′′. Divisors D′ = (P1, ..., Pn), D′′ = P have

degree n + 1,1 correspondingly. We have

ψ′ = e−z̄ζ(k)
∏

s σ(k−Qs)∏
l σ(k+Pl)

×

×(
∑

j wj
σ(k+z̄+P̃+Q̃−Qj)

σ(k−Qj)
). Here P̃ = P1+ ...+

Pn, Q̃ = Q0 + ... + Qn, sum as in C



ψ′′ = e−zζ(p)σ(p+ z +P )/(σ(z +P )σ(p+P )),

ψ′(Qs) = ψ′′(Rs).

All singularity of the quantity c disappear af-

ter multiplication c̃ = cσ(z̄ + Q̃+ P̃ )σ(z +P ).

Take n = 1, Q0 = −Q1, R0 = Q1, R1 = Q0

and solution to the equation

ωζ(Q0) = η1Q0 We have P = Q̃ + P̃ in this

case, so −1/2∆|σ|2 = −2πδ(z).



So our Conclusion based on the case g = 1
is:

The magnetic field B̃ = −1/2∆c̃ is periodic
nonsingular with magnetic flux equal to ONE
QUANTUM UNIT. The magnetic field B =
1/2∆c is always singular for g = 1; it has
magnetic flux equal to zero through the ele-
mentary cell and δ-singularity in the point P .
So this field corresponds to the ”Aharonov-
Bohm” (AB) situation.



For g > 1 number of quantized δ-functions is
equal to k > 1. Both pieces of the original
Riemann surface Γ = Γ′′ ⋃

Γ′ are presented
in the form of k-sheeted branching covering
over elliptic curve Γ′′ → Γ0 as it was in the
works of Krichever dedicated to the elliptic
KP.

Comparison with [DN] shows that the Quan-
tized δ-flux does not affect spectrum in our
case.



The complex Bloch-Floquet manifolds (con-
sisting of nonsingular Bloch functions) for
the level ǫ = 0 and genus g = 1 is M =
M2 ⋃

Γ′ with functions ψ′ and

ψ′′
ext,− =

(1/
√

c)[euz × e−ζ(p)zσ(z + p + R)/σ(z + R)],

L+ψ′′
ext = L+ψ′ = 0.

We did not proved yet that ψ′ cannot be ex-
tended to the higher dimensional component
at the same level, but it is highly probable.



Reconsider now the case g = 0 comparing it
with g = 1.

For c 6= 0 and g = 0 the Bloch manifold is
equal to the union Γ′′ ⋃

Γ′, and both are CP1;

Let c have an isolated zero (minimum) which
is isotropic. Magnetic field became singular,
with δ-term. The extended Bloch function
can be defined for the operator on the man-
ifold M2 = CP1 × Γ0 where Γ0 is an ellip-

tic curve, ψ′′
ext,+ = (const(u))epz̄−ζ(u)z̄σ(z̄ +

u)
√

c/σ(z̄).



Our Conclusion is that the periodic case g =
1 gives the same result as the special case
g = 0 where c has an isolated isotropic zero,
interchanging sectors ±.

The higher number k ≥ 1 of isotropic zeroes
for g = 0 leads to the ”higher rank” family of
nonsingular Bloch functions Mk+1 ⋃

Γ′. Re-
moving δ-singularities by the singular gauge
transformations we get smooth periodic mag-
netic field like in DN with higher flux.



We know that the algebro-geometric case
simply corresponds to the case of trigono-
metric polynomials. We take rectangular lat-
tice in the plane x, y. Following relation is
true Q+ψ′ = M(k)

√
cez̄k Now we choose nor-

malization of ψ′ such that M(k) = 1

It is ”the Sypersymmetry Operator” in peri-
odic case.



Let us extend our theory to the ”infinite”
trigonometric series
We use for that the formula

ψ′ = k
∑

j[κje
pjz−kjz̄/(k − kj)]e

kz̄

for this new normalization where kj are the
lattice points. Here

∑
j κje

pjz−kjz̄ = c

Apply this result to the c → c′ = 1/c which is
an infinite trigonometric series. It gives us a
function ψ′ for the second component L− of
the Pauli operator.



Problem: The component Γ′ of the Bloch
manifold does not affect the ordinary spec-
trum in the Hilbert space of functions in the
whole plane R2. Can we use it for solving
physically meaningful self-adjoint boundary
problems?

New results dedicated to this problem will be
published soon by the authors.


